Stochastic Over-subscription Planning using Hierarchies of MDPs

Abstract

In over-subscription planning (OSP), the set of goals is not
achievable jointly, and the task is to find a plan that attains
the best feasible subset of goals. Recent classical OSP al-
gorithms ignore the uncertainty inherent in many natural ap-
plication domains where OSPs arise. And while modeling
stochastic OSP problems as MDPs is easy, the resulting mod-
els are too large for standard solution approaches. Fortunately
OSP problems have a natural two-tiered hierarchy, and in this
paper we adapt and extend tools developed in the hierarchi-
cal reinforcement learning community in order to effectively
exploit this hierarchy and obtain compact, factored policies.
Typically, such policies are sub-optimal, but under certain as-
sumptions that hold in our planetary exploration domain, our
factored solution is, in fact, optimal. Our algorithms work by
repeatedly solving a number of smaller MDPs, while propa-
gating information between them. We evaluate a number of
variants of this approach on a set of stochastic instances of
the Rover domain, showing subtantial performance gains.

I ntroduction

Over-subscription planning problems (OSPs)! (Smith 2004)
are classical planning problems in which the given set of
goals is not achievable jointly. The task is to find a plan
that achieves some optimal feasible subset of the goals set.?
OSP is a natural generalization of classical planning prob-
lems with their fixed goal set, and they arise in numerous
important application domains. Interesting and useful ex-
amples of OSPs abound, including service scheduling, lo-
gistics problem with constrained resources, and more gen-
erally, problems that involve multiple sub-tasks constrained
by shared resources. This paper is motivated by our work on
the planetary exploration domain, and in particular, our de-
sire to scale-up our algorithms for planetary rover problems.

Many application domain in which OSPs are used, and
planetary exploration in particular, exhibit large amounts

1\We use “OSP” both as an abbreviation of “over-subscription
planning”, and “over-subscription planning problems”.

>There are different formulations of this problem, some in
which goals have weights and actions have costs, such as (Sanchez
and Kambhampati 2005), and some in which qualitative metrics
are used to assess different sub-goals (Brafman and Chernyavsky
2005). This work adopts a decision theoretic approach where the
goal is to maximize the (expected) utility of the goals achieved un-
der resource constraints.

of uncertainty. For instance, the effects of the actions per-
formed by planetary rovers are stochastic, with resource
consumption, distance travelled, etc., being affected by vari-
able unpredictable features of the environment, such as
weather and terrain. It is thus natural to consider stochas-
tic OSPs (SOSPs), i.e., OSPs in which the effects of actions
are stochastic. Such OSPs are modelled naturally as Markov
Decision Processes (MDPs) (Puterman 1994). MDPs natu-
rally capture both the stochastic effect of actions as well as
the ability of multiple events/states to provide value to the
agent. However, the state-space of the resulting MDP grows
exponentially with the number of possible goals in the prob-
lem. These goals are not independent, often indirectly linked
via their consumption or use of shared resources, such as
energy, time, or shared means of transportation. Optimally
solving such MDPs within a reasonable time using current
methods is infeasible given a large set of possible sub-goals.

As observed by (Smith 2004), OSPs lend themselves to
a natural two-level hierarchical model. At the top-level, the
problem is one of scheduling the different sub-tasks. For in-
stance, in planetary rover exploration, decisions at this level
involve the choice of the next location to explore. The sub-
tasks appear at the lower level of this hierarchy, e.g., per-
forming experiments and collecting data at a particular site.
The main contribution of this paper is an approach to solving
stochastic OSPs that exploits this hierarchy and repeatedly
solves substantially smaller MDPs that describe each sub-
task. As our experimental results indicate, as the sub-tasks
increase in complexity and as their number increases, our al-
gorithm becomes considerably faster than similar algorithms
that solve the flat representation of the domains. Moreover,
we show that under a certain assumption that applies to the
type of domains that motivate this work — the solution we
obtain is both compact and optimal.

Our work is closely related to work on hierarchical re-
inforcement learning (Dietterich 2000; Andre and Russell
2002). We farther develop solution techniques that were dis-
cussed in the past, e.g., in (Andre 2003). This line of work
concentrated on learning both because domain models are
not always available, and also because model-based methods
must compute transition functions for macro operators (see
below) — a task considered computationally expensive (An-
dre 2003). Indeed, we have found naive macro computation
extremely expensive, and one of our contributions is to show

that with more clever methods and with particular problem
structure, macros can be computed quite fast. Unlike most
past work, our techniques are also able to generate globally
optimal policies under certain assumptions. Overall, the ap-
proach we present is more unified in its treatment of abstrac-
tion and hierarchy — the two are intertwined, features a new
factored variant of the off-line policy iteration algorithm as
opposed to the on-line algorithms used in Hierarchical RL,
and offers fast macro computation methods. We evaluate
these algorithms on a toy model of the planetary rover do-
main.

The paper is organized as follows: Section 2 provides a
formal description of the problem. Section 3 describes two
variants of our algorithm and proves their optimality under
what we call the reset assumption. Section 4 describes our
empirical results. Section 5 concludes the paper.

Problem Formulation

We briefly review the Markov Decision Process (MDP)
model. We then explain how we recast stochastic OSPs as a
special class of MDPs.

Factored MDPs

A Markov Decision Process (MDP) is a four-tuple
(S, A, T, R), where S is a set of states, A is a set of ac-
tions, T' : S x A x S — R is the transition function which
specifies for every two states s, s’ € S and action a € A
the probability of making a transition from s to s’ when a is
executed, and R : S x A is the reward function, assigning a
real-value to each state-action pair.

We are interested in factored MDPs which have the form
(X, A, T, R). Here X is a set of state variables,and A, T, R,
are as before. The variables in X induce a state space, con-
sisting of the Cartesian product of their domains. Typically,
it is assumed that the transition function 7" is also described
in a compact manner that utilizes the special form of the
state space, such as dynamic Bayes net (Dean and Kanazawa
1993) or probabilistic STRIPS rules (Hanks and McDermott
1994). In this paper, we do not commit to any particular
action description. However, we implicitly assume that it
is easy to identify the relevant variables with respect to an
action a € A. This is the set of variables whose value can
change when a is executed, as well as those variables that
affect the probability by which these variables change their
value. We use in f (a) to denote this set of variables.

Finally, we are interested in problems with a concrete ini-
tial state. Thus, we slightly modify the definition of an MDP
to (X, A, T, R, I), where I is a concrete initial state, i.e., an
assignment of value to each variable in X.

Stochastic OSPs The term oversubscription planning
refers to classical planning problems in which we have a set
of sub-tasks, or sub-goals, that cannot be achieved jointly
because of resource limitation. A weight, or value, is asso-
ciated with each sub-goal, and the task is to generate a plan
that achieves the maximal feasible set of sub-goals with re-
spect to total weight. In this work , we assume that different
goals have different utility and we aim at maximizing the
expected utility of the plan.

The loose coupling of goals/sub-tasks plays an important
role in our approach, as well as in other approaches to OSPs
such as (Smith 2004). It is assumed that sub-tasks are pretty
much independent, coupled only through their effect on a
number of shared resources (such as instruments, time, en-
ergy, memory, etc.). Aside from their effect on shared re-
sources, actions affect only variables local to the task. The
fact that sub-tasks are localized makes it easy to decompose
OSPs. Indeed, domains decomposition methods, and in par-
ticular, the general method proposed by (Amir and Engel-
hardt 2003) naturally leads to a 2-tiered hierarchical model
of OSPs. The leaf nodes in this hierarchy describe the lo-
cal variables and actions for each particular task, as well
as those global parameters required to perform them. The
root node describes the global parameters and is in charge
mostly, but not only, of selecting the next task to perform.
The root and each of its children share variables, but each
sub-process has its own actions. We assume such a decom-
position as part of the input of our problem. We refer the
reader to (Amir and Engelhardt 2003) for more details on
how such decompositions can be formed automatically in
classical planning problems. These ideas (but not the asso-
ciated planning algorithms) extend naturally to MDPs, and
they motivated our formulation of the problem.

A Stochastic Over-subscription Planning problem
(SOSP) is a set { My, ..., M, } of factored MDPs, where

L4 MZ = <X17 A’ia nv R17]l>
e X;NX; C X,foralli > 0,5 > 0suchthati # j. This
is called the running intersection property.

o A;NA; =0foralli# j.
e Each X; : ¢ > 0 contains a special boolean fluent Done;
such that Done; belongs to X, as well.

e R;is0everywhere, except for triples of the form (s, a, s”)
such that Done; is true in s’ and not in s.

e For every ¢ =, no action can change Done; from true to
false.

e The initial states I; agree on shared variables.

The requirement that actions belong to a single sub-process
and that initial states agree on shared variables implies that
M = (X,A,T,R,I), where X = JX;, A = UA;,
R = Y R;,and I = |JI; is an MDP in which for every
a; € A; we have that inf(a) C X;. Thus, a SOSP is simply
an MDP with a special structure. The fact that rewards are
only obtained when Done; becomes true, and that Done;
cannot become false, gives us the type of one-time reward
for accomplishing some sub-task associated with OSPs. In-
deed, the structure of SOSPs is closely related, and general-
izes, the structure reflected in the Orienteering Problem rep-
resentation of (Smith 2004). And it is this special structure
— together with one additional assumption discussed later —
that we wish to exploit. Note, however, that because X
contains one Done; fluent for every i > 0, the state space
of M, remains exponential in n, but it is still much smaller
than the original space with its O(22-: 1Xil),

The sub-process M, is called the root process. The sub-
processes Mjy, ..., M, are called the child (or leaf) pro-
cesses. For each set of process variables X;, we define:

e X; = X, N X, are the separator (shared) variables be-
tween M, and M;.

.)N(i = X; — X are the private variables of M.
o Xo_; = Xy — X; is the difference of M, and M;.

e The set of private variables of M is defined as X, =
Xo — U?:l Xi = ﬂ?:l Xo—i

As we noted above, the state space of factored MDPs is the
Cartesian product of their domains. Thus, we can naturally
define various classes of states (where we assumed Boolean
variables to simplify notation): S = 2%, 5; = 2%, §; =
2Xi, §; = 2%, G5 ; = 2%0-i. Since, the sets X; (i > 0)
and X; (: > 1) constitute a partition of X, each Markov
state s € S can be decomposed in various ways, such as
s = (50, §1,§1, - §n7§n)’ s = (507515 ce §n) and s =
(50, 51, ...5n). Similarly, we will use the notations so =
(SO—iagi) € Sy = Sp_; x S;and s; = (§i,§i) e S; =
S’i X Sl

Policies

So far, we have not explicitly said what we want to do with
our special MDP. Typically, given an MDP, one seeks a pol-
icy, i.e., a mapping from states to actions, that maximizes
some function of the reward stream. We would like to max-
imize the expected sum of rewards — this criteria is well de-
fined because we can at most get rewarded n times in our
model. However, we want to obtain this maximal reward us-
ing a compact policy that reflects the structure of the prob-
lem. Intuitively, this policy would start with M’s policy
which basically decides which sub-goal to achieve next, and
then for each sub-goal, we would follow the policy of the
corresponding M;.

In the simplest case, we define a factored policy to be
the sequence (o, 1 ..., pn), Where o @ Sp — Ag U
{p1,- - punt; and p; 0 S; — A; U {Abort}, i > 0. This is
to be understood as follows: the root process can either exe-
cute a local primitive action ag € Ag, or call a sub-process
through the macro-action p;. Each local policy p; specifies,
in each sub-process state, a choice between an action private
to that process, and passing control back to the root pro-
cess through the Abort action. In this work, we consider the
case where the root process may use several different macro-
actions p; for each sub-process M;. More precisely, the
root process has a different macro-action p;[so—;] : S; —
A; U {Abort} for each vector so—; € So—;, and p;[so—]
may be used only in states so = (so—s,5;) € So. The rea-
sons for this choice will become apparent in the following.

A factored policy uses only part of the state space to make
action choices. For instances, choices of actions in Sq de-
pend only on the root process variables X. Thus, when re-
stricting oneself to a factored policy, one may lose the ability
to generate an optimal policy because one’s decision ignores
some part of the state space. This is why weaker notions
of optimality, such as recursive and hierarchical optimality
were introduced in the field of hierarchical reinforcement
learning (Dietterich 2000; Andre and Russell 2002). In this
paper, we show that under a certain assumption that applies

to the type of domains that motivate this work, there exist a
factored policy that is globally optimal.

The Reset Assumption

The extra property we introduce is the reset assumption. The
intuitive idea is simple: every time we move control to one
of the non-root sub-processes, the value of its private vari-
ables changes back to their initial value. This assumption ba-
sically means that we cannot start working on a task, move to
another, and then come back to the first task and find it in the
state we left it. Note that in general, it is restrictive. How-
ever, we believe it applies to a large sub-class of problems,
including our rover domain (see below). This assumption
may be modelled by adding to the Abort action the effect of
resetting the private variables of the current process to their
initial values. Note that the non-private variables of a sub-
process are not required to change in any particular way, and
that the reset assumption implies the local policy u; is appli-

cable only when all the variables in X; (for i > 0) have their
initial values. Finally, we mention a special case of the re-
set assumption, which we call the visit-once assumption. It
stipulates that each sub-task is attempted once only. This as-
sumption makes for a reasonable heuristic in many domains.

The Rover Application Domain

To illustrate these ideas, consider the problem of exploratory
rovers. In this problem an autonomous vehicle, the rover,
must visit a number of locations. Each location has some
item of interest in it, e.g., a rock, on which the rover can
perform an experiment. Reward is obtained when the exper-
iment concludes successfully. There is no value to repeating
a successful experiment. Experiments usually involve in-
strument placements, preparation of the rock (e.g., coring),
and measurements. Abstractly, the actions used at each of
the locations are the same, e.g., extending the arm, placing
this or that instrument, stowing the arm, etc. However, in
practice, the transition functions for these actions depend on
the location, structure, and nature of this location. Thus, we
have different instances of each instrument placement action
for each location. The state contains fluents and discretized
values of resources such as energy or time. Actions may fail
and their resource consumption is uncertain.

We model the overall problem as follows: the root sub-
process describes the global status of the problem: the
rover’s location, the state of instruments, resource levels,
and which experiments were successful. The possible ac-
tions involve tracking different targets, navigating to differ-
ent locations, and warming up instruments. The children
sub-processes describe the state of the rover and the exper-
iment at a particular rock, as well as the part of the global
information that is relevant to this task, such as resource lev-
els. The actions correspond to the local manipulation of the
rover’s instruments. This decomposition is illustrated for a
simplified rover problem with two sub-tasks in Figure 1.

As mentioned, the reset assumption holds true for our cur-
rent rover model, because the rover must have all of its in-
struments on board, and its arm stowed before it can move.
Thus, we cannot leave an instrument in one location once

M

K Xo: 40: \
At(Start) Navigate (*/*)
Trackstart (*)
H1 [80— 1]
H2[s0-2]
f - N\
o9 Xo: v .
Azt : KRamurc&s X Ar: \
TakePicture(R2) AL &0 ALY TakePicture(R1)
IPRY) Tracked(R2) =2 Tracked(R1) IPRI)
Q)oné e=4 Donel)
Abort2 Abortl
XQ . Xl .
Donel P(R2) Donel P(R1)
k HavePicture(R2)) HavePicture(R1)
M, My

Figure 1: Hierarchical decomposition of a simplified rover
problem: a root process M, navigates among two rocks and
schedules two sub-processes M; and Mo, i.e. two experi-
ments on two different rocks. The hierarchy encapsulates the
natural structure of the domain, so the discretized resource
domain is shared among all processes while the part of the
state specific to the rock location is shared among the pairs
Moyl M;. The solving of M; enriches the root process with
a macro action ; that is an arm placement with conditions
for aborting.

we move to another location. Moreover, actions of prepar-
ing the rock for a measure, such as coring the rock, have to
be re-done if we abort this rock before completing the mea-
sure, because it is not possible to put the rover arm exactly
at the place it was when the rock was cored. So, all interme-
diate work towards the goal is lost once we move to another
rock.

Algorithms

We now describe two algorithms for generating a factored
policy in a SOSP. The fundamental, and well-known idea be-
hind both algorithms is to repeatedly solve small parts of the
problem that correspond to different sub-processes. What
is new in our approach is the manner in which this is done,
by exploiting the special structure of SOSPs to generate an
optimal policy and to efficiently compute the macro-actions
models. Our algorithms can be used with any MDP solution
method to solve the different sub-processes.

Macro-actions play an essential role in this technique.
Both algorithms augments the root domain with a macro
operator p;[so—:], ¢ > 0, sop—; € Sp—;, corresponding to
execution of a local policy for the child domain M, from
states so = (so—4,5:;) € So. This notation is used to em-
phasize the fact that the actual policy over S; implemented
by the macro may depend on the value of the local variables
of My. The macro-operators terminate with the children’s
local Abort action that returns the control to the root pro-
cess. Each macro plays the same role as an ordinary action

of My.2 When we apply macro p;[so_;], the value of sq_;
may not change. Thus, under the reset assumption, what
characterizes a macros is the probability of ending up with
some value of S; given that we started with another. There-
fore, macro-actions transitions probability and rewards may
be expresses as a function of the variables in X; only. To dis-
tinguish these actions from the primitive actions, we denote
their reward function by R;(5;, 14:[so—:]) and their transition
function by T;(5;, ui[so—i], 5%).

In what follows, we assume for the sake of simplicity that
the macros terminate after a finite time. This does not fol-
low from our definition of SOSPs, nor is it essential — i.e.,
the algorithms and proofs below can be modified to handle
non-terminating macros (and some work without modifica-
tion). However, most domains we have in mind satisfy this
property, either because the sub-MDPs are really stochastic
shortest-path problems in which all actions have some posi-
tive probability of success (which implies the required prop-
erty), or because actions consume resources with a positive
probability (most typically with probability 1) and resources
are eventually exhausted.

The Sub-Process Pairs Algorithm

In the sub-process pairs algorithm, we combine each child
process with the root process, and solve them together. For
each 4, we define an MDP M; with state space Sp4; =
2XoUXi and action space

Aoyi = Ag U A; U U
J#i;50—j€S0—;

tilso—j] -

That is, the actions available are the primitive actions of M
and M;, plus all macro-actions for processes j # i.* Transi-
tion probabilities and rewards for M, ; are directly derived
from the definition of the SOP, and from the transition prob-
abilities and rewards of macro-actions 15, j # 4. Bellman
optimality equation for My, ; may be written as:

V0+i (SO-H) = Imax

max | Ro(so,a0) + g To(s0, a0, o) Vo+i(8g, 8i)
ag€Ag :
SOESO

Inax Ri(sia:) + Z Ti(si, i, 57)Vo+i(s0—i, 87)
‘ ¢ SQES»;

max |R;(5;, pj[so—j]) +
J#i

> Ti(55, 1515050, 55) Vosi(s0-j, 5, 57)
53- ESj

A macro is actually a temporally extended action (Sutton et al.
1999). If we were to use a discounted reward criteria, we would
also need to model the expected duration of a macro. This would
slightly complicate things, but the theory is well understood.

*In this algorithm, the Abort action is not needed.

where S044i = (80, 51) = (So_i, Si) = (So_j, Sj, §i).

The algorithm goes through a loop solving MDPs Mg,
in an arbitrary order until steady-state. While solving Mq;,
a new policy poti : So+i — Ao is determined. Conse-
quently, the macro-actions for M; are updated following

. 2o) moti(s0—issi) if poti(so—i, 8i) € Ai
pilso—i](si) = { Abort otherwise .

Here is the pseudo-code of the algorithm:

. Initialize each macro p;[so—;] to Abort everywhere.
repeat
for every sub-process pair Myy; do
Solve Moyy;;
Update macro-actions p;[so—;] based on the solu-
tion of step 4;
until no sub-policy has changed

arNdRE

@

Algorithm 1: Sub-Process Pairs Algorithm

Theorem 1. Under the reset assumption, the subprocess-
pairs algorithm converges to a globally optimal policy in a
finite number of iterations.

Proof. Given a fixed strategy for breaking ties, the behav-
ior of the algorithm does not depend on the technique used
to solve each My,. Therefore, the general result will be
established if we prove the theorem in the particular case
where Policy Iteration (Puterman 1994) is used at step 4 of
the algorithm. The reset assumption implies that with each
local state (so—;, s;) of a pair process Mo, only a single
global state is consistent (reachable). This is the state where
all variables private to a process M, j # 4 have their initial
value:

G(Sofi,si) = (SO,i,g(l), .. .,5?_1, Si7§?+17§91) S S .

The reason being that whenever we are in some sub-process,
all other sub-processes must be in their initial local state.
Thus, if we associate every local state of a sub-process with
the corresponding global state, we can view steps performed
on a sub-process state (i.e., policy improvement and policy
evaluation) as being performed in the global state. If we
show that these steps converge in the global state space, we
are done. Indeed, our algorithm is emulating a version of
standard policy iteration on the complete state-space. To see
this, recall that policy iteration works no matter how many
states are updated in the policy improvement stage (as long
as at least one of the possible improvements is performed)
(Littman et al. 1995). The only condition is that each policy
evaluation step produces an accurate value function. More-
over, after each stage of policy evaluation in M ,, the value
function of that process-pair accurately represents the global
value function over all states where sub-processes M, j # i
are in their initial condition:

Voyi(so—i,si) = V(G(s0—i, i) -

This follows from standard results on planning with tempo-
rally abstract actions (Sutton et al. 1999). Note that the

value function following the local policy evaluation phase
of My, is not accurate in those states where a sub-process
M;, j # 4 is notin its initial states:

Vo+j(s0—j,85) # V(G(s0—j,85)) -

This is because the macro-actions p;[sg—;] may have
changed and V5, has not been update in the mean time.
Fortunately, it is good enough, as for each sub-process pair
Mo4;, we only update the actions in So;, and we “jump
over” all states not in Sy.; using macro-actions parameters
T;and Rj, j # 4. In summary, the algorithm may be seen as
repeatedly performing: (i) policy evaluation over all global
states of interest, and (ii) policy improvements only in global
states where all sub-process M, j # 4 are in their initial
condition, until no further improvement is possible. Then
the algorithm moves to the next process-pair. The algorithm
terminates after a finite number of steps when no sub-policy
has changed over one iteration. At this point, the value func-
tion of each sub-process pair accurately represents the global
value function. O

The Abort-Update Algorithm

The subprocess-pairs algorithms accounts for the (weak)
coupling in between sub-tasks by always including the vari-
ables and actions of the root process when solving a sub-
task. The abort-update algorithm solves each process M,
i > 0 independently of the others and ensures the synchro-
nization in between sub-task by using different rewards for
the Abort action. Intuitively, the Abort action should re-
ceive as a reward the value of the M, state where we will
end-up after passing control back to the root. Therefore, we
use the value function for M, to define the immediate re-
ward for aborting M;, ¢ > 0. While this is the high-level
story, the detailed picture is a bit more complicated. Con-
sider the abort action for A;. The value of aborting depends
on what we can get from the other sub-processes. This is
exactly the value of the current M/, state. However, M; can
see only the variables in X;, and not those in X,_;. Yet,
the value of aborting depends on both.This means that we
actually need to solve a version of M; for each assignment
to Xo_; because each such assignment would yield a poten-
tially different value for abort.>

The possible benefit of the abort-update algorithm over
the subprocess-pairs algorithm is that if the reward functions
for two values of X_; are identical, we do not need to re-
compute the policy for M;. Another advantage is that the
cost per iteration can be substantially cheaper: The cost of
dynamic programming on state space S is O(]S|?). Thus
for the subprocess-pairs algorithms, the complexity of an it-
eration is O(|So_; U S;|?) = O(22X0-i+2Xi): for the abort-
update algorithm, we solve M, |.Sy—;| times, so the running
time is O(|So_;| - |Si|?) = O(2X0-i+2X4). So overall, each
iteration of Abort-Update is O(]So—;|) times cheaper. As we
will see later, our experimental results validate this expecta-
tion of improved performance.

5This is the prime motivation for using a different macro ; for
each so—; € So—i.

The abort-update algorithm cyclically solves sub-
processes M;, ¢ > 0 until a steady-state is reached. The
Bellman equations of the root process is:

Vo(so) = max

max | Ro(so,a0) + E TO(SOaaOvS/O)VO(S/O))
ap€Ao ;
5(€S0

max Ri (83, pi[so—i]) +

_ -0 ~
Ti(54, pilso—il, s';) Vo(so—i, 85)
S;

=/
Si

m

where so = (so—s, 5;), and the Bellman equation of a leaf
process is:

Vi[so—i](s;) = max

Ri(si,a; Ti(si, ai, s7)Vilso-il (s7) | ;
;?eajli (Sva)+ /GZS (S,G,Sl) [80](Sz))

k3
Vo(so—i, §5)

In the second equation, the term V4 (so—;, §;) represents the
reward for aborting. Once the MDP M, [so—;] is solved, the
macro-action p;[so—;] is updated to the optimal solution of
this process. Here is the pseudo-code of the algorithm:

1: Initialize each macro p;[so—;] to Abort everywhere.

2: repeat

3: Solve M,

4: for every sub-process M;,i=1,...,ndo

5: for every assignment so_; to X(y_; do

6: Solve M; [SO—i];

7 Update 1;[so—;] based on the solution of step 6;
8: until no sub-policy has changed

Algorithm 2: Abort-Update Algorithm

Theorem 2. Under the reset assumption, the abort-update
algorithm converges to a globally optimal policy in a finite
number of iterations.

Proof. We can re-use most of the arguments developed in
the proof of Theorem 1. First, it is sufficient to show that the
theorem holds when Policy Iteration is used at step 3 and
6. Second, under the reset assumption, each state sy of M)
represents the single reachable global state

G(So) = (So,g(lJ, . §0) es,

r n
and each state of s; of M;[so—;] represents the single reach-
able global state

G[Sofi](Si) = (5072', 5(1], ey 5?_1, Siy §?+1, 52) S S .

Therefore, the algorithm may be seen has working on the
set of reachable global states. Now, conversely to the
subprocess-pairs algorithm, abort-update may not be seen as
an implementation of standard Policy Iteration in the global
state space. In particular, the value function at the end of the
policy evaluation stage of a process does not always repre-
sent exactly the value function of the global process. At the
end of the policy evaluation stage of M, we have, as in the
subprocess-pairs algorithm,

VO[SO] = V(G(So)) .

This comes from the standard arguments on planning with
temporally abstract action. Then we move to process M;
and perform several iterations of policy evaluation followed
by policy improvement. At the end of the first stage of policy
evaluation, we still have the desired property:

Vilso—1] = V(G[s0-1](s1)) -

This is due to the fact that the reward for aborting is equal
to the value of the root process, which is an exact represen-
tation of the global value function. However the policy im-
provement stage modifies the macro-actions p1[so—1], and
these changes are not propagated to the states of M. There-
fore, at the second iteration of policy evaluation in My, we

have
Vilso—1] # V(G[so-1](s1)) -

Therefore, the abort-update algorithm cannot be related to
standard Policy Iteration in the global state space. Fortu-
nately, we can establish a correspondence between the al-
gorithm and another global algorithm that is known to con-
verge. For the abort-update algorithm, we rely on the con-
vergence of Asynchronous Policy Iteration (Bertsekas and
Tsitsiklis 1997). In Asynchronous Policy Iteration, the pol-
icy evaluation and policy improvement steps are not syn-
chronized. That is, the policy evaluation step is not nec-
essarily carried until termination, and does not have to in-
clude all the states of the problem. Policy Iteration, value
updates on some states are interspersed with policy updates
on some states. Bertsekas and Tsitsiklis (1997) show that
this algorithm converges to an optimal policy. With the
correspondence established between reachable global states
and local states, it is now apparent that our abort-update al-
gorithm is emulating a particular implementation of Asyn-
chronous Policy Iteration. Indeed, (Bertsekas and Tsitsik-
lis 1997)[p.33] explicitly mentions the use of asynchronous
policy iteration on a partitioned state space as a special
case. o

Computing the M acro-Actions Parameters

One of the main steps in both algorithms is the computa-
tion of the macro transition probabilities T;(5;, u;, 5;) and
expected reward R;(s;, p;) for a given a macro-action p; :
S; — A; U {Abort}.® This section discusses the compu-
tation of T;. Given that the reward is non-zero only if the
macro reaches the goal before completion, R; is easily de-
duced from T,.

®In this section we omit the argument [so_;] in macro-actions,
since the computation is the same for all macro-actions.

Each macro defines a policy for its sub-process, which in-
duces a Markov chain on S;. There are well known methods
for computing the state arrival probability in such cases (Ke-
meny and Snell 1976). Since we have assumed that macros
complete in finite time with probability 1, this Markov chain
is absorbing. The absorbing states are the states where
Abort is the optimal action (which includes the states where
the goal is achieved). All the states that are non absorbing
are called transient states. The transient states form one or
several strongly connected components. If there are several
such components, we say that the chain is structured. There
is a natural ordering of the strongly connected components:
every trajectory starts in a component and move irreversibly
from component to component until it gets absorbed in an
absorbing state. Assumptions on the planning domain deter-
mine the structure of the chain. For instance: (i) if resources
are always decreasing or constant, then each resource level
defines a strongly connected component; (ii) if, moreover,
every local action may only advance the sub-task towards
its goal or leave it unchanged (failure), then all loops of the
chain are self-loops, and every transient state constitutes a
different strongly connected component. The later case ap-
plies to the toy rover problem used in our simulations. This
structure may be used to accelerate macro parameters com-
putation.

We denote by 7}, the transition matrix of the Markov
chain induced by ;. Given an initial value 5; € S, there is
a single consistent initial state for the chain, (s;, %) (this
follows from the reset assumption) The goal is then to
compute, lim; .o, T} ((5i, 37), s7) for all s} € S; such that
wi(sh) = Abort. Then we have

S’La z Z SZ? i (Szvsz))'

SIES

In this work, we consider two techniques for computing
these values.

Forward technique: We denote by ! (s; | 5;) the proba-
bility of the chain being in state s; after ¢ transitions, know-
ing it started in state (5;, 39). It is easy to show that, for each
ab(sjorbing state s¢, we have T2°((5;,57), s¢) = m3°(s¢ | 5:)
an

g T (84, 8%) §7T (si | 8:)

$;€S5;

7TOO a|sl

So, it is sufficient to compute >~ 7'(s; | ;) for each
transient state s;, and then push all this probability mass to
the absorbing states in one step. Starting from the recursive
equation:

7T£+ISZ|S ZT'LSZ7Z z(z|§i)a

sL€S;

we end up with the following system of linear equations with
one equation and one unknown for each transient state:

ST, S
t=0 t=0

which has a unique solution

an T,,) "I

This system of linear equations can be solved analyti-
cally or by successive approximations. When the chain
has additional structure, each strongly component may be
treated independently as follows: We start by computing
> =0T (si | 5;) for each s; in the initial component. This
is a smaller system of linear equations with one equation
and one unknown for each state in the initial component.
Next, we push all this probability mass to the successor com-
ponents in one step, and solve each of them independently
of the others, again, dealing with smaller systems of linear
equations. Finally, when all strongly connected components
are solved, we push all the probability mass to the absorb-
ing states in one step. This is an application of standard
technique to accelerate Gaussian elimination in structured
systems of linear equation.

If all loops in the chain are self-loops, as in our toy
problem, then all systems of equations above have a sin-
gle unknown and a single equation which takes the form:
Do m(si) = ci +Pr(si | si,p5) 22,7 (si), where
Pr(s; | si, i) is the probability of a self-loop in s; under p;
and ¢; is some constant. So Y~,° 7t (s;) = ¢; /(1 — Pr(s; |
si, v)). This allows for a very fast analytical computation
of macro-action parameters in our toy problem.

Backward technique: The backward technique computes
T2 once and for all, and then extracts all the relevant infor-
matlon from it. We start from the recursive equation:

§ oo
817 z T i 817 z T (81’81) ’
sL€S;

where s¢ is an absorbing state of .S;. Denoting T, [s¢] the
vector of transition probabilities to the absorbing state s¢,
we end up with the following system of linear equations:

T [si] = T [s?) + T, T, 7]
which has the following unique solution
Tlsi] = (I = Tp,) "' T, [57] -

Again this system may be solved analytically or by linear ap-
proximations. If there is structure in the Markov chain, ac-
celerated Gausian elimination techniques lead to the follow-
ing backward algorithm: First, compute the transition prob-
ability T;2°(s;, s¢) for all states s; in the last strongly con-
nected component(s) before absorbing states. This amounts
to solving a linear system of dimension lesser than the
above. Next, use this result to compute 777°[s¢] in the sec-
ond to last component(s), and so on. Agaln if all loops
are self loops, all systems have dimension one and we have

T35 (siy 7)) = i/ (1= Pr(s; | i, pi))-

Comparison: If the transition matrix 7T),, is structured,
then the forward technique may be implemented without an
explicit representation of it (the algorithm manipulates only

occupation probabilities ~,°) «!). This can save consider-
able memory. On the other hand, the whole computation is
repeated once for each initial value of s;. Therefore, if the
chain can go through the same state s; with two different ini-
tial values of s;, we implicitly compute the probability of the
paths from s; to an absorbing state several times (once for
each initial value of 5;). However, this technique can iden-
tify early on that a state of the Markov chain is not reachable
given the initial condition, and thus focus the computation
only on the reachable states.

Conversely, the backward technique needs an explicit rep-
resentation of the transition matrix 7,77, which consumes
memory. It never performs duplicate computation, since
the probability of all paths leading to an absorbing state are
computed once and for all. However, it is not able to identify
that a state is not reachable given the initial conditions be-
fore the computation is complete, and so, it might compute
the probability of some path from an unreachable state to an
absorbing state.

Therefore, we have different trade-offs in terms of mem-
ory and execution time. In our simulations, we implemented
the analytical version of both techniques. Our results show
an advantage in terms of execution time to the forward tech-
nique in all the problem instances tried (there are five of
them). This shows that in our domain model, reachability
analysis saves us more time than what duplicate computa-
tions cost.

Empirical Results

We implemented and tested our two hierarchical algorithms
using Value lteration to solve sub-processes, as well as stan-
dard (flat) Value Iteration, on an instance of the rover do-
main. Although this is a simplified instance of the real do-
main used at NASA (e.g., continuous variables were dis-
cretized and there are no concurrent actions), it remains a
challenging problem for current MDP solution algorithms.
In this domain, sub-tasks representing rocks of scientific in-
terest are completed by performing a number of successive
actions. For instance, we must first deploy the rover arm,
then position the rock abrasion tool, core the rock, position
the camera, take the picture, and finally stow the arm. These
actions consume uncertain amount of resources and may fail
with positive probability. So, each sub-process represent a
single chain of states with possible self-loops. At high level,
we have to decide between navigating to a location, and, if
there is a target at the current location, starting to work on
that target. We varied the following parameters of the prob-
lem:

e the number of actions necessary to complete a sub-task,
which directly determines the number of states in which
each sub-process can be, but does not affect the size of the
root process;

o the range of discretized resources. As resources represent
shared variables, it determines the size of the separation
between each sub-process and the root process;

e the total number of locations and targets, which deter-
mines the size of the root process but does not affect the
size of each sub-process.

Simulation results are presented in Fig. 2 and 3. All the
graphs in these figures represent execution time (in seconds)
as a function of the resource range (the minimum resource
is 0 in all cases). Figure 2(a) presents the overall computa-
tion time of each algorithm on the reference problem, which
contains 5 sub-process with 6 states in each sub-process. In
this experiment, both the abort-update and the subprocess-
pairs algorithm use the forward macro-action computation
technique. Not surprisingly, Fig. 2(a) shows that the flat
algorithm is largely outperformed by the hierarchical ones.
Moreover, in this problem as in the 4 other problems we
tested, abort-update exhibit better performances than the
subprocess-pairs. Figure 2(b) was obtained with the same
problem instance, using the abort-update algorithm. It com-
pares the performance of the two techniques for computing
macro-actions parameters. It shows that the forward tech-
nique is slightly faster than the backward one. Again, qual-
itatively identical results were obtained with all problem in-
stances tried. Figure 3 illustrate how the abort-update with
forward macro-action computation is impacted by the size
of the problem. As we see from Fig. 3(c), the algorithm is
strongly influenced by the number of targets. This is where
exponential growth is to be expected, and although this is
much better than using a flat model, more work is needed to
help the algorithm scale up to large numbers of sub-tasks.
Finally, in Fig. 3(d) we see that the complexity of the local
sub-tasks has much less influence on the computational ef-
fort, which is quite encouraging. These results also show
that the solution of the root process is the dominant factor in
the complexity of the algorithm.

Summary and Related Work

We describe an approach for solving Stochastic Over-
subscription Planning problems. This approach exploits the
hierarchical structure of the problem and works by itera-
tively solving naturally defined sub-problems. Under the
reset assumption, these algorithm converge to a globally op-
timal policy.

Our method approach to SOSPs utilizes ideas that ap-
peared in some of the previous work on problem decompo-
sition studied in the area of decision-theoretic planning and
the hierarchical reinforcement learning literature. Our so-
lution approach starts with a hierarchical problem represen-
tation. (Amir and Engelhardt 2003) shows how such a de-
composition can be constructed automatically from a given
problem description for classical planning problems. We
have implicitly used and extended these ideas to stochastic
planning problems. Our domain imposes a natural two-level
hierarchy, but deeper trees decompositions are possible.

Given a decomposition of the domain, it would be nice
if the complexity of the solution algorithms would depend
on the size of the local sub-domains, rather than the global
state space. Unfortunately, as people have discovered in
the past, this is not true in general. This leaves two av-
enues of research: (1) finding factored policies that satisfy
weaker forms of optimality; and (2) finding additional re-
strictions that suffice for making factored policies optimal.
Much work, especially in hierarchical reinforcement learn-
ing has pursued the first option. Starting with the MaxQ al-

600

Py —7 T T ,g
Sub-process pairs ---x---
Abort-update ----x---- x

500 | / i

Execution Time (s)

100 7 - .

300 - ' g

200 X g

0 50 100 150 200 250 300

Maximum Resource

(a) Algorithms comparison.

Execution Time (s)

AU Mecros forward —+— X
300 |- AU Macros backward -—-—— >< 1
250 4
200 4
150 4
100 + 4
50 4

0 .
0 50 100 150 200 250

Maximum Resource

(b) Macro parameters computation comparison.

Figure 2: Simulation results: algorithms comparison

gorithm (Dietterich 2000), researchers have considered how
to find optimal policies of particular form — one that con-
forms to some hierarchy of sub-routines, or more generally,
to programs. The MaxQ algorithm yields a recursively op-
timal policy. This is a very weak local optimality guaran-
tee, whose relation to global optimality is difficult to assess.
Later (Andre and Russell 2002) showed how to obtain the
more powerful level of hierarchical optimality. Hierarchical
optimality is optimality with respect to the restricted class
of policies that factors according to a pre-defined hierarchy.
Thus, the work in hierarchical RL starts with hierarchical
policy structure and attempts to find the best policies of this
form. The restriction on the policy paves the way for the use
of abstraction (because some aspects of the domains within
the special class of policies used are irrelevant). For hier-
archical optimality to hold, these “certificates” for these ab-
stractions must be provided explicitly by the user.

An important difference between that line of research and
our work stems from the fact that we assume a domain
model. With this model, a model-based decomposition is
used, and it induces both natural abstractions as well as a
natural factored form for the policy. We showed that un-
der certain assumptions, optimality can be maintained under
this factorization. It is interesting to note that (Andre 2003)
discussed similar assumptions in the context of proving the
convergence of a variant of Q-learning. Also, the hierar-
chical optimality of our solution follows immediately from
these results with respect to the class of factored policies we
seek even when the reset assumption is not satisfied.

As pointed out by (Guestrin and Gordon 2002), there
are two common ways of splitting a problem into simpler
pieces. Serial decompositions partition the state space into
sub-regions. The canonical example are robot activities in-
volving navigation, where each sub-problem corresponds to
some region of space. Much of the work done to date pur-

sues this approach. A primary example, and one of the
first ones is (Dean and Lin 1995), and at a high-level, our
algorithm is very similar to their algorithm, i.e., we too
use an iterative approach that propagates information be-
tween sub-domains and converges to an optimal solution.
Another example is (Hauskrecht et al. 1998). The other,
less often discussed, type of decomposition is Parallel de-
compositions, where the state space is the product of the
sub-problems, rather than their union. Some examples of
such decompositions include (Guestrin and Gordon 2002;
Meuleau et al. 1998). Thus, the size of each problem is
exponentially smaller than that of the original problem, of-
fering much more potential savings than serial decompo-
sitions. As explained above, parallel decomposition tech-
niques are unlikely to yield optimal solution because deci-
sions are based on partial information. What we show is
that under the reset assumption, the parallel and the serial
decomposition are almost identical. Although syntactically
our decomposition is parallel, because of reachability con-
siderations, it is equivalent to a serial decomposition because
few states are really reachable.

Overall, this paper offers a unified and principled model-
based approach for using hierarchy and abstraction to tackle
stochastic OSPs. Although the worst-case complexity of our
algorithms remains exponential in the total number of do-
main variables, our initial experimental results show signif-
icant speed-ups in practice, indicating that this a promising
approach that is likely to scale up to realistic domain mod-
els. It also shows that macro computation, long considered
a very expensive steps, can be efficiently implemented given
sufficient domain structure. We also see great potential for
very fast approximately optimal algorithms (e.g., by ignor-
ing small distinctions between macros for different states)
and methods that make better use of reachability informa-
tion.

600 T — T T T T T T
‘ X 2 Targets —+—
i 5 Targets -
500 | i 8 Targets - b

Execution Time (s)

Maximum Resource

(@) Influence of the number of targets.

0 .
0 100 200 300 400 500 600 700 800 900

Execution Time (s)

600 . . .

6 states --->---
9 states —--x---- iOF

500 |- Ko 1

* ’X/

400 -

300 -

200

100

0 .
0 50 100 150 200 250 300

Maximum Resource

(b) Influence of the number of sub-process states.

Figure 3: Simulation results: influence of the problem size

References

E. Amir and B. Engelhardt. Factored planning. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, pages 929-935, 2003.

D. Andre and S. Russell. State abstraction for pro-
grammable reinforcement learning agents. In Proceedings
of the Eighteenth National Conference on Atrtificial Intelli-
gence, pages 119-225, 2002.

D. Andre. Programmable Reinforcement Learning. PhD
thesis, University of California, Berkeley, 2003.

D.P. Bertsekas and J. Tsitsiklis. Neuro-Dynamic Program-
ming. Athena Scientific, 1997.

R. 1. Brafman and Y. Chernyavsky. Planning with goal
preferences and constraints. In Proceedings of the Fif-
teenth International Conference on Automated Planning
and Scheduling, 2005.

T. Dean and K. Kanazawa. A model for reasoning about
persistence and causation. Computational Intelligence,
5(3):142-150, 1993.

T. Dean and S.H. Lin. Decomposition techniques for plan-
ning in stochastic domains. In Proceedings of the Four-
teenth International Joint Conference on Artificial Intelli-
gence, pages 1121-1129, 1995.

T. Dietterich. Hierarchical reinforcement learning with the
maxq value function decomposition. Journal of Al Re-
search, 13:227-303, 2000.

C. Guestrin and G. Gordon. Distributed planning in hier-
archical factored MDPs. In Proceedings of the Eighteenth
Conference on Uncertainty in Artificial Intelligence, pages
197-506, 2002.

S. Hanks and D. V. McDermott. Modeling a dynamic and
uncerain world i: Symbolic probabilistic reasoning about
change. Artificial Intelligence, 66(1):1-55, 1994.

M. Hauskrecht, N. Meuleau, L.P. Kaelbling, T. Dean, and
C. Boutilier. Hierarchical solution of markov decision pro-
cesses using macro-actions. In Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence,
pages 220-229, 1998.

J.G. Kemeny and J.L. Snell. Finite Markov Chains.
Springer-Verlag, New York, NY, 1976.

M.L. Littman, T.L. Dean, and L.P. Kaelbling. On the com-
plexity of solving Markov decision problems. In Proceed-
ings of the Eleventh Conference on Uncertainty in Artificial
Intelligence, pages 394-402, 1995.

N. Meuleau, M. Hauskrecht, K.E. Kim, L. Peshkin, L.P.
Kaelbling, T. Dean, and C. Boutilier. Solving very large
weakly coupled markov decision processes. In Proceed-
ings of the Fifteenth National Conference on Atrtificial In-
telligence, pages 165-172, 1998.

M.L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York, NY,
1994,

R. Sanchez and S. Kambhampati. Planning graph heuris-
tics for selecting objectives in over-subscription planning
problems. In Proceedings of the Fifteenth International
Conference on Automated Planning and Scheduling, 2005.

D. Smith. Choosing objectives in over-subscription plan-
ning. In Proceedings of the Fourteenth International Con-
ference on Automated Planning and Scheduling, pages
393-401, 2004.

R.S. Sutton, D. Precup, and S. Singh. Between MDPs and
semi-MDPs: A framework for temporal abstraction in re-
inforcement learning. Artificial Intelligence, 112:181-211,
1999.

